Introducción


Introducción

La ubicuidad de la química en las ciencias naturales hace que sea considerada una de las ciencias básicas. La química es de gran importancia en muchos campos del conocimiento, como la ciencia de materiales, la biología, la farmacia, lamedicina, la geología, la ingeniería y la astronomía, entre otros.
Los procesos naturales estudiados por la química involucran partículas fundamentales (electronesprotones y neutrones), partículas compuestas (núcleos atómicos, átomos y moléculas) o estructuras microscópicas como cristales y superficies.
Desde el punto de vista microscópico, las partículas involucradas en una reacción química pueden considerarse un sistema cerrado que intercambia energía con su entorno. En procesos exotérmicos, el sistema libera energía a su entorno, mientras que un proceso endotérmico solamente puede ocurrir cuando el entorno aporta energía al sistema que reacciona. En la mayor parte de las reacciones químicas hay flujo de energía entre el sistema y su campo de influencia, por lo cual puede extenderse la definición de reacción química e involucrar la energía cinética (calor) como un reactivo o producto.
Aunque hay una gran variedad de ramas de la química, las principales divisiones son:
  • Bioquímica, constituye un pilar fundamental de la biotecnología, y se ha consolidado como una disciplina esencial para abordar los grandes problemas y enfermedades actuales y del futuro, tales como el cambio climático, la escasez de recursos agroalimentarios ante el aumento de población mundial, el agotamiento de las reservas de combustibles fósiles, la aparición de nuevas formas de alergias, el aumento del cáncer, las enfermedades genéticas, la obesidad, etc.
  • Fisicoquímica, establece y desarrolla los principios físicos fundamentales detrás de las propiedades y el comportamiento de los sistemas químicos.14 15
  • Química analítica, (del griego ἀναλύω) es la rama de la química que tiene como finalidad el estudio de la composición química de un material o muestra, mediante diferentes métodos de laboratorio. Se divide en química analítica cuantitativa y química analítica cualitativa.
  • Química inorgánica, se encarga del estudio integrado de la formación, composición, estructura y reacciones químicas de los elementos y compuestos inorgánicos (por ejemplo, ácido sulfúrico o carbonato cálcico); es decir, los que no poseen enlaces carbono-hidrógeno, porque éstos pertenecen al campo de la química orgánica. Dicha separación no es siempre clara, como por ejemplo en la química organometálica que es una superposición de ambas.
  • Química orgánica o química del carbono, es la rama de la química que estudia una clase numerosa de moléculas que contienen carbono formando enlaces covalentes carbono-carbono o carbono-hidrógeno y otros heteroátomos, también conocidos como compuestos orgánicos. Friedrich Wöhler yArchibald Scott Couper son conocidos como los padres de la química orgánica.
La gran importancia de los sistemas biológicos hace que en la actualidad gran parte del trabajo en química sea de naturaleza bioquímica. Entre los problemas más interesantes se encuentran, por ejemplo, el estudio del plegamiento de proteínas y la relación entre secuencia, estructura y función de proteínas.
Si hay una partícula importante y representativa en la química, es el electrón. Uno de los mayores logros de la química es haber llegado al entendimiento de la relación entre reactividad química y distribución electrónica de átomos, moléculas o sólidos. Los químicos han tomado los principios de la mecánica cuántica y sus soluciones fundamentales para sistemas de pocos electrones y han hecho aproximaciones matemáticas para sistemas más complejos. La idea de orbital atómico y molecular es una forma sistemática en la cual la formación de enlaces es comprensible y es la sofisticación de los modelos iniciales de puntos de Lewis. La naturaleza cuántica del electrón hace que la formación de enlaces sea entendible físicamente y no se recurra a creencias como las que los químicos utilizaron antes de la aparición de la mecánica cuántica. Aún así, se obtuvo gran entendimiento a partir de la idea de puntos de Lewis.

Historia

Las primeras civilizaciones, como los egipcios16 y los babilónicos, concentraron un conocimiento práctico en lo que concierne a las artes relacionadas con la metalurgia, cerámica y tintes, sin embargo, no desarrollaron teorías complejas sobre sus observaciones.
Hipótesis básicas emergieron de la antigua Grecia con la teoría de los cuatro elementos propuesta por Aristóteles. Esta postulaba que el fuego, aire, tierra y agua, eran los elementos fundamentales por los cuales todo esta formado como mezcla. Los atomicistas griegos datan del año 440 A.C, en manos de filósofos como Demócrito y Epicuro. En el año 50 Antes de Cristo, el filosofó romano Lucrecio, expandió la teoría en su libro De Rerum Natura (En la naturaleza de las cosas)17 18
Al contrario del concepto moderno de atomicismo, esta teoría primitiva estaba enfocada más en la naturaleza filosófica de la naturaleza, con un interés menor por las observaciones empíricas y sin interés por los experimentos químicos. 19
En el mundo Helénico la Alquimia en principio proliferó, en combinación con la magia y el ocultismo, como una forma de estudio de las substancias naturales para transmutarlas en oro y descubrir el elixir de la eterna juventud.20 La Alquimia fue descubierta y practicada ampliamente en el mundo árabe después de la conquista de los musulmanes, y desde ahí, fue difuminándose hacia todo el mundo medieval y la Europa Renacentista a través de las traducciones latinas. 21

Química como ciencia

Bajo la influencia de los nuevos métodos empíricos propuestas por Sir Francis Bacon, Robert Boyle, Robert Hooke, John Mayow, entre otros, comenzaron a remodelarse las viejas tradiciones acientiíficas en una disciplina científica. Boyle, en particular, es considerado como el padre fundador de la química debido a su trabajo más importante, «El Químico Escéptico» donde se hace la diferenciación entre las pretensiones subjetivas de la alquimia y los descubrimientos científicos empíricos de la nueva química. 22 Él formuló la ley de Boyle, rechazó los «cuatro elementos» y propuso una alternativa mecánica de los átomos y las reacciones químicas las cuales podrían ser objeto de experimentación rigurosa, demostrándose o siendo rebatidas de manera científica. 23
La teoría del flogisto (una substancia que, suponían, producía toda combustión) fue propuesta por el alemán Georg Ernst Stahl en el siglo XVIII y sólo fue rebatida hacia finales de siglo por el químico francés Antoine Lavoisier, quien dilucido el principio de conservación de la masa y desarrollo un nuevo sistema de nomenclatura química utilizada para el día de hoy. 24
Antes del trabajo de Lavoisier, sin embargo, se han hecho muchos descubrimientos importantes, particularmente en lo que se refiere a lo relacionado con la naturaleza de "aire", que se descubrió, que se compone de muchos gases diferentes. El químico escocés Joseph Black (el primer químico experimental) y el holandés J. B. van Helmont descubrieron dióxido de carbono, o lo que Black llamaba "aire fijo" en 1754; Henry Cavendish descubre el hidrógeno y dilucida sus propiedades. Finalmente, Joseph Priestley e, independientemente, Carl Wilhelm Scheele aislan oxígeno puro.
El científico Inglés John Dalton propone en 1803 la teoría moderna de los átomos en su libro, «La Teoría Atómica», donde postula que todas las substancias están compuestas de "átomos" indivisibles de la materia y que los diferentes átomos tienen diferentes pesos atómicos.
El desarrollo de la teoría electroquímica de combinaciones químicas se produjo a principios del siglo XIX como el resultado del trabajo de dos científicos en particular, J. J. Berzelius y Humphry Davy, gracias a la invención, no hace mucho, de la pila voltaica por Alessandro Volta. Davy descubrió nueve elementos nuevos, incluyendo los metales alcalinos mediante la extracción de ellos a partir de sus óxidos con corriente eléctrica. 25
El Británico William Prout propuso el ordenar a todos los elementos por su peso atómico, ya que todos los átomos tenían un peso que era un múltiplo exacto del peso atómico del hidrógeno. J. A. R. Newlands ideó una primitiva tabla de los elementos, que luego se convirtió en la tabla periódica moderna creada por el alemán Julius Lothar Meyer y el ruso Dmitri Mendeleev en 1860. 26 Los gases inertes, más tarde llamados gases nobles, fueron descubiertos por William Ramsay en colaboración con Lord Rayleigh al final del siglo, llenando por lo tanto la estructura básica de la tabla.
La química orgánica ha sido desarrollada por Justus von Liebig y otros luego de que Friedrich Wohler sintetizara urea, demostrando que los organismos vivos eran, en teoría, reducibles a terminología química 27 Otros avances cruciales del siglo XIX fueron: la comprensión de los enlaces de valencia (Edward Frankland,1852) y la aplicación de la termodinámica a la química (J. W. Gibbs y Svante Arrhenius, 1870).

Estructura Química

Llegado el siglo XX los fundamentos teóricos de la química fueron finalmente entendidos debido a una serie de descubrimientos que tuvieron éxito en comprobar la naturaleza de la estructura interna de los átomos. En 1897, J. J. Thomson, de la Universidad de Cambridge, descubrió el electrón y poco después el científico francés Becquerel, así como la pareja de Pierre y Marie Curie investigó el fenómeno de la radiactividad. En una serie de experimentos de dispersión, Ernest Rutherford, en la Universidad de Manchester, descubrió la estructura interna del átomo y la existencia del protón, clasificando y explicando los diferentes tipos de radiactividad, y con éxito, transmuta el primer elemento mediante el bombardeo de nitrógeno con partículas alfa.
El trabajo de Rutheford en la estructura atómica fue mejorado por sus estudiantes, Niels Bohr y Henry Mosley. La teoría electrónica de los enlaces químicos y orbitales moleculares fue desarrollado por los científicos americanos Linus Pauling y Gilbert N. Lewis.
El año 2011 fue declarado por las Naciones Unidas como el Año Internacional de la Química.28 Esta iniciativa fue impulsada por la Unión Internacional de Química Pura y Aplicada, en conjunto con la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. Se celebró por medio de las distintas sociedades de químicos, académicos e instituciones de todo el mundo y se basó en iniciativas individuales para organizar actividades locales y regionales.

Principios de la química moderna

El actual modelo de la estructura atómica es el modelo mecánico cuántico.29 La química tradicional comenzó con el estudio de las partículas elementales: átomos, moléculas, 30 sustancias, metales, cristales y otros agregados de la materia. La materia podía ser estudiada en estados líquido, de gas o sólidos, ya sea de manera aislada o en combinación. Las interacciones, reacciones y transformaciones que se estudian en química son generalmente el resultado de las interacciones entre átomos, dando lugar a recordenamientos de los enlaces químicos que los mantienen unidos a otros átomos. Tales comportamientos son estudiados en un laboratorio de química.
En el laboratorio de química se suelen utilizar diversos útiles de cristalería. Sin embargo, la cristalería no es fundamental en la experimentación química ya que gran cantidad de experimentación científica (así sea en química aplicada o industrial) se realiza sin ella.
Una reacción química es la transformación de algunas sustancias en una o más sustancias diferentes.31 La base de tal transformación química es la reordenación de los electrones en los enlaces químicos entre los átomos. Se puede representar simbólicamente como una ecuación química, que por lo general implica átomos como la partícula central. El número de átomos a la izquierda y la derecha en la ecuación para una transformación química debe ser igual (cuando es desigual, la transformación, por definición, no es química, sino más bien una reacción nuclear o la desintegración radiactiva). El tipo de reacciones químicas que una sustancia puede experimentar y los cambios de energía que pueden acompañarla, son determinados por ciertas reglas básicas, conocidas como leyes químicas.
Las consideraciones energéticas y de entropía son variables importantes en casi todos los estudios químicos. Las sustancias químicas se clasifican en base a su estructura, estado y composiciones químicas. Estas pueden ser analizadas usando herramientas del análisis químico, como por ejemplo, la espectroscopia y cromatografía. Los científicos dedicados a la investigación química se les suele llamar «químicos».32 La mayoría de los químicos se especializan en una o más áreas subdisciplinas. Varios conceptos son esenciales para el estudio de la química, y algunos de ellos son: 33

Materia

En química, la materia se define como cualquier cosa que tenga masa en reposo, volumen y se componga de partículas. Las partículas que componen la materia también poseen masa en reposo, sin embargo, no todas las partículas tienen masa en reposo, un ejemplo es el fotón. La materia puede ser una sustancia química pura o una mezcla de sustancias. 34

Átomos

El átomo es la unidad básica de la química. Se compone de un núcleo denso llamado núcleo atómico, el cual es rodeado por un espacio denominado «nube de electrones». El núcleo se compone de protones cargados positivamente y neutrones sin carga (ambos denominados nucleones). La nube de electrones son electrones que giran alrededor del núcleo cargados negativamente.
En un átomo neutro, los electrones cargados negativamente equilibran la carga positiva de los protones. El núcleo es denso; La masa de un nucleón es 1.836 veces mayor que la de un electrón, sin embargo, el radio de un átomo es aproximadamente 10.000 veces mayor que la de su núcleo 35 36
El átomo es la entidad más pequeña que se debe considerar para conservar las propiedades químicas del elemento, tales como la electronegatividad, el potencial de ionización, los estados de oxidación preferidos, los números de coordinación y los tipos de enlaces que un átomo prefiere formar (metálicos, iónicos , covalentes, etc).

Elemento

Un elemento químico es una sustancia pura que se compone de un solo tipo de átomo, caracterizado por su número particular de protones en los núcleos de sus átomos, número conocido como «número atómico» y que es representados por el símbolo Z. El número másico es la suma del número de protones y neutrones en el núcleo. Aunque todos los núcleos de todos los átomos que pertenecen a un elemento tengan el mismo número atómico, no necesariamente deben tener el mismo número másico; átomos de un elemento que tienen diferentes números de masa se ​​conocen como isótopos. Por ejemplo, todos los átomos con 6 protones en sus núcleos son átomos de carbono, pero los átomos de carbono pueden tener números másicos de 12 o 13. 37
La presentación estándar de los elementos químicos está en la tabla periódica, la cual ordena los elementos por número atómico. La tabla periódica se organiza en grupos (también llamados columnas) y períodos (o filas). La tabla periódica es útil para identificar tendencias periódicas. 38

Compuesto

Un compuesto es una sustancia química pura compuesta de más de un elemento. Las propiedades de un compuesto tienen poca similitud con las de sus elementos. 39 La nomenclatura estándar de los compuestos es fijado por la Unión Internacional de Química Pura y Aplicada (IUPAC). Los compuestos orgánicos se nombran según el sistema de nomenclatura orgánica. 40 Los compuestos inorgánicos se nombran según el sistema de nomenclatura inorgánica. 41Además, el Servicio de Resúmenes Químicos ha ideado un método para nombrar sustancias químicas. En este esquema cada sustancia química es identificable por un número conocido como número de registro CAS.

No hay comentarios.:

Publicar un comentario